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We consider the problem of steady fast flow of a family of Oldroyd fluids into a hole, 
and show that the field of flow is partitioned into elliptic (subcritical) and hyperbolic 
(supercritical) regions. We analyse the characteristics and show that the vorticity 
changes type as in the experiments of Metzner, Uebler & Fong (1969). 

1. Introduction 
This paper is one of a series that addresses the analogue of the ‘transonic ’ problem 

of aerodynamics that arises in the problem of steady flow of viscoelastic liquids. This 
problem is associated with the fact that the equations governing the distribution of 
vorticity in steady flow can change type (Joseph, Renardy & Saut 1984, hereinafter 
referred to as JRS); the flow is then partitioned into subcritical (elliptic) and 
supercritical (hyperbolic) regions for vorticity in a manner which has some analogies 
with the partitioning of high-speed flow of gases into sub- and supersonic regions. 
The viscoelastic problem is a very new one; there are only four papers: Rutkevich 
(1970, 1972), Ultman t Denn (1970), Luskin (1985) and JRS. Very little is known 
about the physical consequences of changing type; e.g. there is no theory of simple 
waves or shock waves. Many curious unexplained phenomena of flow of viscoelastic 
liquids may have their origin in the transition from sub- to supercritical flow. In  this 
series of papers we try to move the theory closer to experiments by emphasizing issues 
that bear on the explanation of observations. We have also made some modest effort 
at identifying phenomena that could involve a change of type. Some of the entries 
on our list appear to fall in the frame of axisymmetric flow, and we have provided 
some elements of a theory for these. It cannot be said that we have achieved 
outstanding successes in our effort to identify clearly the type of observations that 
are really explained by mathematics of change of type. The obstacles that we 
encounter are partly theoretical, having to do with the fact that the nonlinear theory 
is not yet well developed, particularly with respect to the development of shocks. The 
other theoretical problem has to do with constitutive equations. It can be shown, and 
Rutkevich (1972) and JRS have shown, that the conditions for change of type or the 
equivalent conditions for loss of evolutionarity in unsteady problems are very 
sensitive to the choice of constitutive equations. This problem, which has always been 
troublesome, even in realms of fairly slow flows, is much more so for high-speed flows. 
JRS showed that all the Oldroyd models in the family that contains the upper and 
lower convected Maxwell models have a vorticity of changing type. In fact they 
showed that models that are very much more general than Oldroyd ones have 
vorticity changing type, and that the vorticity of all motions of all models with 
instantaneous elasticity that perturbs rigid motions changes type. But it appears that 
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not all models that change type are such that i t  is precisely the vorticity that changes 
type. We do not know if a given fluid fits some one constitutive model in all of its 
possible motions. Probably it never does. But if we are to progress we must certainly 
try to  verify that some real fluids do exhibit the more striking properties implied by 
the model. A change of type t o  hyperbolicity of the vorticity is one such striking 
property. 

The reader may regard this paper as the second one of a series starting with JRS. 
I n  this paper we are going to give a theory that leads to vorticity of changing type 
in the perturbation of sink flow. We apply this theory to  the problem of flow into 
a hole, which could conceivably be regarded as perturbing sink flow in some sense. 
Many experiments on flow into a hole have been reported, but those by Metzner, 
Uebler & Fong (1969) are notable because they exhibit a vorticity of changing type. 

The plan of this paper is as follows. In  $2 we specify our constitutive model. We 
consider Oldroyd models with instantaneous elasticity. These models contain the 
upper and lower convected and the co-rotational Maxwell models, and they exhibit 
vorticity of changing type. The equations are analysed for type in $3 and the 
characteristics are identified. The analysis of the quasilinear problem in $3 is without 
approximation. In  $4 we linearize the quasilinear problem and show how the 
characteristics for any axisymmetric motion perturbing a basic one may be computed. 
I n  $ 5  we give the formulae for the characteristics of the axisymmetric motion that 
perturbs sink flow. In $6 we stretch our imagination and imagine that flow into a 
hole is a small perturbation of sink flow, and we apply the results of such imaginative 
thinking to explain the curious experimental results of Metzner et al. (1969). 

2. Oldroyd models with instantaneous elasticity 
The family of Oldroyd models given by 

where D is the symmetric part of the velocity gradient, T is determinate stress, A is 
a relaxation time and 9/9t is an invariant derivative given by (2.2), can be said to  
have instantaneous elasticity. The fluids (2.1) have instantaneous elasticity when 
A =k 0, and the elastic response is more persistent when A is large. Viscous fluids 
(Newtonian) have no elasticity, A = 0. The invariant derivative is given by 

gT aT 
- = -+(u.V)r+dZ-S2SLr-a(Dr+~D), (2.2) gt at 

where SZ = !j(Vu-VuT) and - 1 < a < 1. All these derivatives are frame-indifferent. 
The Jaumann derivative has a = 0. An upper convected Maxwell model arises from 
(2.2) when a = + 1, while a = - 1 corresponds to the lower convected Maxwell model 
and a = 0 to the co-rotational model. These models may be evaluated in viscometric 
flows. Comparison of this evaluation with observations suggests that, of the three 
distinguished values a = - 1, 0, 1, a = 1 is best. More generally i t  is believed that the 
good a’s are positive and slightly less than one (Astarita & Marrucci 1974). 

We are interested in thc quasilinear dynamical system associated with (2.1), (2.2) 
and 

divu = 0, 
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Fluids satisfying (2.1)-(2.3) are said to have instantaneous elasticity. They do not 
smooth discontinuities as is in the case of fluids of Jeffrey's type, which have viscous 
terms which typically appear as time derivatives of D multiplied by a retardation 
time. This quasilinear system (2.1)-(2.3) has been studied by Rutkevich (1970, 1972) 
and JRS. The latter authors showed that the vorticity, curlu = o, associated with 
(2.1) and (2.2) satisfies a second-order quasilinear equation 

p [ 3 + 2 u . v - + u  at 
u Qxlaxj -- "".I 

This second-order equation shows that the vorticity is an important hyperbolic 
variable. There can be waves, possibly shock waves, of vorticity. In  plane flow and 
in axisymmetric flow there is only one component of vorticity, so that (2.4) reduces 
to a scalar-valued second-order quasilinear equation. This second-order equation 
shows precisely that it is the vorticity that changes type. The analysis of the type 
of such equations is well developed, and JRS showed that in the plane case of steady 
flows the vorticity can change their type with subcritical and supercritical flow in 
different regions of the plane. In  fact JRS defined a class of fluids with instantaneous 
elasticity more general than (2.1) and (2.2)- that have vorticity of changing type. 

3. Analysis of quasilinear systems in spherical coordinates 
The analysis of quasilinear systems in orthogonal curvilinear systems is facilitated 

by the fact that only the terms with the highest derivatives enter into the analysis. 
This means that all of the extra terms, over and above Cartesian ones, which enter 
from geometry from the differentiation of base vectors, may be neglected. The 
systems of quasilinear equations that arise in this way have the same form, at highest 
order, as in Cartesian coordinates, except that the components are relative to the 
curvilinear system. 

In the present analysis we consider (2.1)-(2.3) in spherical polar coordinates (r, 8, q5) 
where 8 is the polar angle. In  the axisymmetric problem we denote the velocity by 

(3.1) u = (u ,v ,w)  = (u ,v ,O) 

and the determinate stress by 

T C = 7  y 0 .  (3-2) [: I ;I 
In  addition, a/a$ = 0. Equations (2.1)-(2.3) may then be written as 

( 3 . 3 ~ )  

(3.3b) 

(3.34 

1 1 
r r 

u,+-v8 = -- (2u+v cote), 

1 1 
r r 

1 1 
r 

uur+-ue +pr-c,--78 = --bV2+2g-y--8+7 cote], 

= -[--puv+37+(y-p) cot 81, 

( :> 
0- ZYT 

(a- 1 ) - ,  (3 .34  ug, +-go- 2(ac+p) u, + (a- 1) 721,. + (a + 1) -u8 = --- [ 7 1  r r 
V 

r 
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1 7 

r r 
2(ay +p)  - ug + (a- 1) -ug + (a + 1) 7vr 

(3.3e) 

(3.3f) 
V B 2  up,+-po = - -++P+~) (u+v cote), r h r  

1 1 
r 

[(a - 1 ) u + (a + 1) y + 2p] - u g  + [(a - 1 ) y + (a  + 1) f7 + 2p] 21, 

7 
- - ---- {[(a+i)~+(a-i)y+2p~v+2a7u+2a7v cote), (3.38) h 2r 

where the subscripts denote differentiation. 

(2.4), we h d  that w satisfies the following second-order equation: 
In axisymmetric flow there is only one component of vorticity, o = wed, and, uaing 

a2o 1 asw 1 a Z w  

ar2 raear r2ae2 
A-+2B--+C-- = lower-order terms, 

where 
A = pu2-[+(a+ 1) u++- 1)7+/%], 

G =pv2-[i(a- l )n+i(a+ 1) y+p].  

B = PUV - 7 ,  

(3-4) 

(3.5) 

The differential equation for the characteristics of the vorticity is in the form 

(3.6) 
dB -Bf(B2-AC)i 
dr  A 

r -  = 

There are real characteristics if and only if 

0 < B2 - AC. 

If B2-AC < 0 the vorticity satisfies an elliptic equation. Since A ,  B,  C depend on 
the solution, we might expect to  see regions of the flow where the problem is 
hyperbolic and regions where it is elliptic. 

It is also of interest to compute characteristics from the first-order system (3.3). 
We write this as 

(3.7) 

(3.8) 
aq  B W  A-+--= f ,  
ar r a0 

where 
q = (u, v, p ,  u, y ,  d ,  7 ) ,  

and A,  B, f depend on q, but not on its derivatives. We suppose that q is given on 
a curve #(r,  0 )  = 0. Suppose s is the arclength on the curve. Then 

(3.9) 
d q - a q a r  aqae 
ds ar as ae as 

+-- ---- 

is known on the curve. The curve #(r ,  0 )  = 0 is characteristic if (3.8) and (3.9) cannot 
be uniquely solved for the derivatives of the components of q. 

This leads to  the condition that 

(3.10) 
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So rd8/dr is an eigenvalue of B relative to A. Applying (3.10) to (3 .3) ,  we find that 

(a2+ 1 ) (au + w ) ~  {bu2- [a(. + 1 )  cr++(u - 1)  y + p ] ]  a2 

+ 2(puw -7)  a + [pv2 - [+(u - 1 )  u + t (u + 1 )  y + p] ] }  = 0, (3.1 1 )  
where 

d8 
dr 

a=-r- .  

It follows that streamlines are triply characteristic. Streamlines always have real 
characteristics and do not exhibit a change of type. On the other hand, the remaining 
real root is the one we have already associated with the vorticity, and is given by 
(3 .5)  and (3 .6) .  It is a real root only if (3 .7)  is satisfied. 

There is a large literature on slip at walls. Slip is a discontinuity of velocity across 
a streamline. Slip surfaces must lie along streamlines. Slip mechanisms are said to 
be important in some of the phenomena collectively called melt fracture, but the 
appearance of slip surfaces in such phenomena seems to be controversial (for an 
interesting discussion and extensive list of references see Petrie & Denn 1976). It is 
not known if the phenomenon called slip is a manifestation of some weak solution 
of the governing hyperbolic system that allows shocks or is something different, like 
cohesive fracture under shear. 

The streamlines are characteristic but do not change type. In the models considered 
here the vorticity changes type and the characteristic directions for the vorticity do 
not lie along streamlines. 

4. Quasilinear theory and linear theory 
In  $ 3  we classified the quasilinear system (2.1)-(2.3) without approximation. 

Certain definite results can be obtained from the quasilinear analysis under lineariza- 
tion. We first suppose that we have some exact solution of the governing equations. 
We are going to consider sink flow. We then linearize the equation around the exact 
solution and carry out an analysis of hyperbolicity and change of type of the 
linearized equations. The characteristics depend, of course, on the unperturbed flow. 
The analysis of the linearized equations is greatly simplified by the formulas we have 
already derived for the exact quasilinear system. To compute characteristic directions 
for the linearized systems we have only to put the values that the field variables take 
on in the unperturbed motion in the equations for the characteristics. 

In the work to follow we treat the flow into a hole as a perturbation of sink flow. 
Sink flow is the axisymmetric irrotational solution in Rs given by 

y = -Q/r2 ,  w = 0. 
The stresses in this flow are given by (3.3d, e, g) as 

7 = 0, 

= - 2  era/sAQ ,.2a s-2a-l e-8a/sAQ d8. 
c1 r 

We shall also find /3 from (3 .3 f )  and then p from (3.3b, c ) .  Formulas for these 
quantities are not given here, because they are not needed in the formula for the 
characteristics of the perturbed flow. 
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Now we consider axisymmetric perturbations of sink flow. We linearize (3.3) around 
(4.1) and (4.2). The characteristics for the vorticity of the linearized equations are 
given by (3.6), using the expressions (4.1) and (4.2): 

It is generally true that the characteristics of the linearized problem are determined 
by the unperturbed problem. However, the streamlines, vorticity and stresses of the 
linearized problem cannot be determined by the unperturbed problem. To determine 
these quantities we must solve linearized boundary-value problems. In the present 
case we are considering the flow into a hole as representable in some sense by an 
axisymmetric perturbation of sink flow. Though we do not believe that such a large 
perturbation could be accurately represented by a linearized problem, we may hope 
to find results in some qualitative agreements with experiments. 

The linearized problems should be solved relative to decay conditions on the 
solution as r+ 00 and subject to the condition that w = w = 0 on the plane containing 
the hole and u = - Q / r 2  on this plane. In fact, we shall not solve this linearized 
problem, and seek now only to compare the characteristics given by (4.3) with 
observations. 

5. Characteristics for the vorticity of axisymmetric flow perturbing 
sink flow 

Our aim now is to evaluate r and y for sink flow to obtain explicit forms of the 
characteristics (4.3) of the vorticity of axisymmetric flow which perturb sink flow. 
We first introduce dimensionless parameters 

where C(R) and T(R)  are given by 

( 5 . 2 ~ )  

(5.2b) 

( 5 . 2 ~ )  

(5.2~') 

The characteristic equation (4.3) may be written in the dimensionless variables as 

These are real characteristics whenever 

B2 - AC = {S/R4 - [$(a + 1) C+ +(a - 1 )  r+ l]} {+(a - 1 )  Z++(U + 1 )  r+ l }  > 0. (5.4) 
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We shall consider three cases: a = 1, 0 and - 1. Then is can be readily shown by 
integration by parts from (5.2c, d) that 

(5.5) 

4 4Y -+-, - l+R2Y]  (a  = l) ,  
R3 R4 

w,o= ( - 2 r , O  b = 0 ) ,  it 
where 

I 

It is also useful to note by applying L'Hospital's rule to (5.2c,d) that as R+O 

b3f .R4a"T($z ) ,  -!] U (0 < a < l),  

(5.7) I (Z,r)+ (-4lnR, 21nR) (a = 0), [--, 1 - f 3 2 a R 2 a r ( - + ) ]  ( -1  < a < O ) ,  [ U 

where P i s  the gamma function. 

given by 
The regions of hyperbolicity B2 - AC > 0 and the characteristic curves are now 

R4 Ip 

r ( R 3  +$R4@)}t] (a = - 1). 
S + R2@ - R4 

[($+$- 1) (R3+iR4@),  f 

In the regions of hyperbolicity the characteristics are of the form 0 = 8, +-g(R), where 
0, E [0,7c) is a constant of integration. The functions g(R) are more or less spirals in- 
planes containing the axis of symmetry, the exact form of these spirals are shown 
in figure 1 and in the figures of $6. When a = 1 and a = - 1 the vorticity is hyperbolic 
in a sphere around the origin. The characteristic surfaces are cones near the origin, 
and they are tangent to the spherical border between hyperbolic and elliptic regions. 
This border is an inflow boundary, so that the characteristics are tangent to spherical 
inflow boundary defining change of type. A typical characteristic net for a = 1 is 
shown in figure 1 .  The characteristic net for the corotational model a = 0 is in a 
spherical shell, hyperbolic in the shell, elliptic in a neighbourhood of the origin and 
outside the shell (see figure 4). 
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Is= 0 

e - J 

r* 0 10 20 30 40 
cm 

FIGURE 1. Typical characteristics net for the vorticity of an axisymmetric flow perturbing sink 
flow of an upper convected Maxwell model (a = 1, Q = 3354 cma/s, r* = 33.4 cm). 

6. Discontinuities of vorticity in steady flow into a hole 
I n  the experiments of Metzner et al. (1969) a fluid is sucked from a pipe of large 

diameter through a sudden contraction (figure 2). If the hole into which the flow goes 
is small the problem may be thought to be a form of sink flow. Because there are 
boundary walls, the flow through a sudden contraction is not a sink flow in a strict 
sense. We shall imagine first that the flow into the hole is not strongly influenced by 
the walls of the large pipe. We then have a hole in the semi-infinite regions above 
a plane. This flow is then regarded as an axisymmetric perturbation of sink flow 
without boundaries. 

There are many reports of experiments on flows through a sudden contraction but 
the only one which has information about vorticity near the sink is the paper of 
Metzner et al. (1969). They consider high-speed flow of viscoelastic fluids into a sudden 
contraction (see figure 2). They say that 

A tentative analysis of the observed velocity field suggests the flow upstream of the small 
duct to be radially directed toward the origin of the spherical coordinate system. If this 
is so the continuity equation gives 

ur2 = f ( e ) .  (1) 
They actually measure velocities in the cone, and they report that  their measurements 
were accurate and that f(0) may be taken as constant when 0 < 8 < 10". They give 
experimental results and say that : 

In the central conical region of the velocity field in which the fluid shearing deformations 
are negligibly small we may write equation (1) as 

Q 
r2 ' 

u = -  

where f ( 0 )  hits been replaced by the constant Q, which is proportional to the volumetric 
flow rate q. Under the conditions studied, equation (1 a) applies to about 70 yo of all the fluid 
entering the tube from upstream. For purposes of further analysis we will restrict our 
attention to this central region (0 < 0 < 10'); in this region the kinematics of the flow 
process, in spherical coordinates, are especially simple : 

Q 
r2 ' 

= u = -  

These equations may be shown to give rise to a diagonal deformation rate tensor. 
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I 
I 

5 

b I 
0 

FIGURE 2. Schematic diagram of flow into a sudden contraction (Metzner et al. 1969). 

Newtonian fluid: 70 yo Globe brand white corn syrup in water: ,u = 1.96 poise 
Viscoelastic fluid: 0.5 yo Separan AP 30, a partially hydrolysed polyacrylamide, in water 
Flow behaviour index n = 0.424, measured rheogonimetricallyt 
Flow rates: 

Figure 3: 5.45 gal./min. 
Figure 4:  7.25 gal./min. 
Figure 5:  21.75 gal./min. 

Geometry of equipment: 
Downstream tube: 

I.D. = 1.48 in. 
O.D. = 2.00 in. 

Upstream reservoir: square crow section 18 in. on a side. A distributor plate, to develop equal 
axial velocities at all radial positions, was mounted 10 in. upstream from the entrance to  the 
small tube. 

Illumination : through the vertical central plane of the apparatus. Width (depth) of illuminated 
plane : in. 

Tracer particles: small air bubbles. 
Temperature: all data reported were taken at 22.0+2 "C. 

non-Newtonian fluid used (34). 
t Curves of both the shearing stress and the first normal stress differences are available for the 

TABLE 1 .  Experimental conditions corresponding to figures 3 to 5 

The observed flow is irrotational and has a potential 4 = Q / r  in the central region. 
There is apparently a non-zero vorticity outside this central region. Derivatives of 
the vorticity must be discontinuous on the border of the central region. 

The reader should now examine the characteristic nets shown for sink flow in 
figure 1. We take two members of this characteristic family separated by a cone 
angle of 10'. The hyperbolic character of the system allows potential flow in the cone 
and flow with vorticity outside of it. We wish to compare these theoretical cones of 
hyperbolicity with the three experiments reported by Metzner et a l .  The three 
experiments correspond to sinks of increasing strength. Their figure 8 is for 
q = 7.25 gal/min = 460 cm3/s, figure 9 is for q = 14.5 gal/min = 920 cm3/s, figure 10 
is for q = 21.75 gal/min = 1380 cm3/s. 
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i e = o  

l e = o  
cm 

I e = o  

I* 0 10 20 30 40 r* 0 10 20 30 40 50 
cm cm 

FIGURE 3. Comparison of the characteristics for the vorticity of en upper convected Maxwell model 
in an axisymmetric flow perturbing sink flow with experiments on flow into e hole: (a) 
q = 460 cmS/s, S = 143.21, r* = 23.430 cm, R* = 3.3723 (S  x 4R*+R*9; (b )  q = 920 cmS/s, 
S = 227.33, r* = 33.396 cm, R* = 3.8150 (S  x 4R*+R**); (c) q = 1380 cms/s, S = 297.89, 
r* = 41.036 cm, R* = 4.0952 (S  x 4R*+R*4). 

To compute the regions of hyperbolicity and the form of the characteristic surfaces 
we need values for the dimensionless flow-rate parameter S and the scale length ( A @ ,  
which is used to form the dimensionless radius. For these parameters we need values 
for the viscosity 7, a relaxation time A ,  the sink strength Q and the density p. The 
viscoelastic fluid used in the experiments was 0.5% Separan AP30, a partially 
hydrolysed polymer. We take the density of this solution asp = 0.89 g/cms. We used 
the values 7 = 3 poise, A = 0.1 s given by Metzner (1967) for a 0.45 % Separan AP30 
solution. The shear-wave speed is C = ( ~ / A p ) i  = 5.63 cm/s. To compute Q we 
use the observation that the sink-flow formula ( la)  of Metzner et al. applies to 
'about 70% . . . '. Then 0.7q gal/min is equal to the mass into the conical region (of 
hyperbolicity 2 )  with apex angle B = 10"; that is 

Q 0.7q = u,A =--A = Q ~ z ( ~ - c o s ~ ) ,  
r2 

where 2nr2(1 -cos8) is the area A of a spherical cap on the cone. Therefore 

Q = 0.74/2Z( 1 - COS 10"). (5.1) 

With these values given we compute the values given in table 1. 
We shall now compare the results of our analysis with the experiment. This is done 

in three groups (3a-c; 4a-c; 5a-c) of figures corresponding to three entries of 
table 1. For each of the three sink strengths p we show the following. 

(i) The region of hyperbolicity. These are spheres of outer radius r* when a = 1 
or a = - 1 and annular regions between spheres of inner radius r: and outer radius 
r,* when a = 0. The regions inside the circles of radius r* in figures 3 and 5 are 
hyperbolic. The annular region in figure 4 between r,* and r: is hyperbolic. The 
vorticity is elliptic where it is not hyperbolic. 

(ii) On each of figures 3-5 we draw a cone with semivertex angle 10" centred at 
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FIQURE 4. Comparison of the characteristics for the vorticity of a corotational Maxwell model in 
an axisymmetric flow perturbing sink flow with experiments on flow into a hole: (a) q = 460 cmS/s, 
S = 143.21, r: = 7.6009 cm, R: = 1.094, rz = 23.625 cm, R,* = 3.4003 (8 k! R 3 ;  (b) 920 cma/s, 
S = 227.33,rf = 9.5765 cm,R: = 1.094,rz = 33.572 cm,Rz = 3.8351(8 = Rz');(c)q = 1380 cms/s, 
S=297.89,rf= 10.962cm,Rf=1.094,r~=41;20cm, Rz=4.1123. (S%Rz4) .  

e = o  

I 
I 

r+ 0 10 20 30 
cm 

e = o  e = o  

, I 

r* 0 10 20 30 40 F 0 10 20 30 40 50 
cm cm 

FIQURE 5. Comparison of the characteristics for the vorticity of a lower convected Maxwell model 
in an axisymmetric flow perturbing sink flow with experiments on flow into a hole: (a) 
q = 460 cma/s, S = 143.21, r* = 23.89 cm, R* = 3.4378, (8 x R*'); (a) q = 920 cmS/s, S = 227.33, 
r* = 33.70 cm, R* = 3.8542 (8 x R*'); (c) q = 1380 cms/s, S = 297.89, r* = 41.340 cm, 
R* = 4.1256, (S x R*4). 

the origin. Metzner et al. found that the flow in this cone ww the potential flow (1 a, b). 
Actually they verified the relationships (1 a, b) for different values of the radius r,  my 
A < r G B and different 8, 0 < 0 < 10'. The conical region between the spheres of 
radius A and B where (1 a, b) was verified in the experiments is shown in figures 3-5. 

(iii) We next draw on each of the figures 3-5 all of the cross-sections of characteristic 
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surfaces of revolution that are tangent to the central cone a t  the origin. There are 
two characteristic surfaces of revolution, which come in at an angle of 10’ at the origin 
(see figure l ) ,  and the four dark lines on the figure represent the cross-section of the 
two surfaces. 

We regard the comparisons of theory and experiment of this paper as exploratory 
and not definitive. It is of course striking that the experiments of Metzner et al. (1969) 
do appear to involve a vorticity of changing type. It would be interesting to see if 
this striking type of experimental result could be repeated by other investigators 
using different fluids and experimental arrangements. We hasten to add that the 
Separan solution used in the experiment is not an Oldroyd model and surely cannot 
be characterized by a viscosity and relaxation time. In fact only special models give 
the vorticity precisely as the quantity which changes type. We have already 
remarked that models with true viscosity, e.g. retardation times, will smooth 
discontinuities, with only a little smoothing if the retardation ‘viscosity ’ parameter 
is small. Probably all the polymer solutions used in experiments have some small 
smoothing. In view of all these uncertainties in theory and experiments, it would be 
premature to make strong claims. 
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